

CONTENTS

About the author		
Rider	Levett Bucknall	5
Prefac	ce	6
EX	Executive summary	7
1	Introduction	8
2	Scope of the study	9
3	Timber frame elevations and plans	10
4	Masonry elevations and plans	12
5	Detailed specification	14
6	Cost comparison	16
7	Procurement guidance	18
8	Cost considerations	19
9	Other considerations	20
10	Summary	21
11	Acknowledgements	22
12	Contact information	23

Timber frame & masonry.

An independent study to compare the cost of the two build methods in order to determine which is more economical for affordable housing.

Kitchen / Dining 15.008 Sa. m

The purpose of this report is to gain an appreciation of the comparative costs and establish the basis for a more detailed study. The report's conclusion of this preliminary investigation is that timber is marginally more cost effective than masonry. However, to unequivocally prove the case a more extensive investigation and detailed analysis will be undertaken.

ABOUT THE AUTHOR

lan Dacre BSc (Hons) MRICS, RLB Partner

lan has been active in the residential sector for over 20 years and has delivered 1,169 homes of varying forms. Ian's current live residential projects total just over 650 homes. Within Ian's affordable and private market portfolio are apartment blocks, houses, bungalows, terrace houses, Grade 1 and 2 listed conversions and the infrastructure associated with each.

He is partner at Rider Levett Bucknall in Bristol, a Chartered Quantity Surveyor with 25 years' experience and an assessor for the RICS. He has been involved with Constructing Excellence for a number of years and has undertaken research in Defining Value, Supply Chain Integration, Knowledge Management, Performance Management and Desired Outcomes resulting in published papers.

lan is the author of the STA Estimating Guide 2016 and is currently writing the updated version due for launch later in 2018.

He has also been involved in partnering research through Homes England. Ian has lectured in cost management and other related topics throughout his career.

lan's most notable projects (non-residential) are Securing the Heritage Core and Recreating Brunel's Great Engine for the SS Great Britain Trust and for Prestige Ticketing (Sodexo) the three storey 5* hospitality pavilion and other concession stands for the London 2012 Olympics.

TIMBER

Currently accounting for about 28% of UK housing, structural timber is a well-proven, versatile construction method. It benefits from the many cost efficiencies of off-site manufacture, including reduced build programmes.

MASONRY

The majority of UK housing is currently delivered using traditional masonry methods.

On site construction using masonry has benefited from recent innovation and remains an efficient and cost effective approach.

RIDER LEVETT BUCKNALL

Rider Levett Bucknall (RLB) has been operating in the residential sector for over 20 years. Our clients include national house-builders, residential developers and investors, registered affordable housing providers, Borough Councils, the Greater London Authority and Homes England.

Our capability is wide-ranging and our residential portfolio includes:

- £300m+ private led mixed use
- Master planning
- Build to rent developments
- Affordable housing
- Estate regeneration
- Residential towers up to 65 storeys
- Prime apartments and houses
- Specialist housing and care
- Office to residential conversions
- Historic structures
- Student residences

Our residential team are experts in their field and able to add insight and create real value through the design and development process. Over the last 5 years, we have been actively involved in schemes providing over 20,000 homes, with a value in excess of £5bn and currently have over 8,000 homes under construction.

With 500 UK staff and 3,600 worldwide Rider Levett Bucknall has a truly global reach, and with such scope can offer a local presence to its clients almost without exception. We are committed to our core services and pride ourselves on our dedication to customer care and leading edge service provision. We are an award winning leading independent firm providing our clients with some of the most comprehensive and forward-thinking advice available.

AT A GLANCE

- Independent: privately owned and managed
- £48 million UK turnover
- £235 million global turnover
- 500 people throughout the UK
- 10 UK offices
- Over 120 offices worldwide
- Delivering quality services with business growth through customer satisfaction

CORE SERVICES

- Cost management and quantity surveying
- Project and programme management
- Building surveying and Health & Safety
- Design management
- Specification consultancy
- Advisory

PREFACE

Rider Levett Bucknall (RLB) has delivered many residential projects over the years.

The selection process over the form of construction considers a number of factors including availability, practicality and technical performance. Importantly this process also involves commercial considerations and sometimes the debate over whether masonry or timber is the most economical solution.

This deliberation is continuing throughout the industry and will be intensified by structural offsite timber solutions becoming increasingly used to fulfil the growing demand for new homes across the UK. Equally there is increasing demand for cross laminated timber (CLT) which is now competing economically with steel and concrete frames.

We are pleased to have been able to complete this independent study comparing timber frame to masonry for a conventional housing project and we gratefully appreciate the time taken by the four contractors who priced the model project, the consultant architects and engineers who provided their expertise, as well as the other parties involved.

We hope the research will be of interest to many members of the construction industry and has provided an answer to a question that has been debated for many years, and probably will continue to be in the future.

Andrew Reynolds UK and Global Board Director Rider Levett Bucknall UK Ltd

EXECUTIVE SUMMARY

The research study has been managed independently by Rider Levett Bucknall (RLB) with the support of the parties named.

The affordable house type designs were provided by independent architect and engineering companies.

From the fully designed project RLB prepared Bills of Quantities for the contractors to price.

Four contractors were approached to submit their pricing and all four responded.

Contractor information was received regarding the anticipated construction programmes.

RLB has used the pricing to formulate this independent report and the costs summaries therein.

COST SUMMARY

	TIMBER	MASONRY
Construction cost per m ²	£1,055.90	£1,067.24
Overall cost per m²	£1,148.38	£1,180.34
Programme (weeks)	41	49
Construction cost saving	1.1%	
Overall cost saving	2.8%	
Programme saving	19.5%	

The independent result of this study has demonstrated that timber frame is the most economic structural solution.

This report is based on prices received during 1Q 2018. Markets and economies within the construction industry will change in the future and may influence the conclusions with in this study.

A future study focusing on private house building and possibly performance standards across a range of dwelling types will broaden the analysis and conclusions reached.

As with many structural solutions throughout the construction industry this debate will continue.

INTRODUCTION

Which is the more economical way to build housing: timber frame or masonry?

This question has been posed by many people and organisations within the construction industry for years. As both construction techniques are widely used throughout the UK industry, albeit masonry is more prevalent in England and Wales, it can be assumed that there is not much between the two. If one was more expensive than the other, its use would not be so prevalent.

We would assume it is a simple question to answer, but the more in depth you look the more multifaceted the answer becomes. RLB has discussed with contractors in the past about their build preferences, some preferring timber, some preferring masonry. Indeed tenders returned over the years have had similar differences, some offering a timber structural solution, some masonry, for the same project but with the overall tender price being very comparable.

Comparing the two build methods is complex as the structures, procurement models and site operations are different. Masonry construction, in general terms, constitutes separate supply chain members and then site assembly of the constituent parts (walls, floors, roof trusses) whereas with timber frame the offsite manufacturer usually designs, manufactures, delivers and erects the whole structural shell of the home, including the roof structure. This presupposes the timber frame company supplies and erects the whole frame (walls, floor and roof).

RLB has been asked this question in the past and it is difficult to give a precise answer without looking in detail at the specific design and nature of the buildings and the associated build programme for the individual projects. There are many other comparisons and wide ranging issues within construction all affecting the values and this is just another one. Comparing a structural steel frame with a concrete frame has been debated for decades with no definitive answer resulting as to which is more economical to build.

In undertaking this independent study we required the input from other organisations and these are listed throughout. We stress that it is an impartial study by RLB with the analysis prepared using the mean results from the independent prices received.

RLB's experience suggests the costs related to all forms of housing construction, at any one time, depend on:

- Experience
- Availability of resources
- Organisations commercial position
- Market situation national and local
- Site specific constraints and risks

What RLB has delivered with this study is to provide an independent market tested model to arrive at an answer. The model used in this report is a typical affordable housing design and RLB plans to publish a further assessment in the future of a speculative private housing model for detached, semi-detached and medium rise apartment accommodation.

Ian Dacre Partner

Rider Levett Bucknall UK Ltd

May 2018

T: 0117 974 1122

E: ian.dacre@uk.rlb.com

SCOPE OF THE STUDY

The model is an affordable two storey housing design using two bed four person dwellings complying with Homes England (formerly the Homes and Communities Agency) design standards. The model was then replicated to create a single terrace block of four houses. Each block is assumed to have the following mix:

- 2nr mid terrace
- 2nr end terrace

To give a degree of scale for the project we have taken eight terrace blocks resulting in a total scheme delivery of 32 new dwellings.

The house type designs were prepared by HTA Design LLP with structural engineering input by Milner Associates. It is assumed that the foundation design is similar for both build methods and any cost benefit possible from a lighter timber structure has not been incorporated.

The structural designs, whether timber or masonry, create the same layouts, sizes and arrangements and are designed to the current edition of the Building Regulations in England.

RLB prepared a New Rules of Measurement (NRM) Bills of Quantities (BQ) with an overall pricing summary for issue to the contractors as follows:

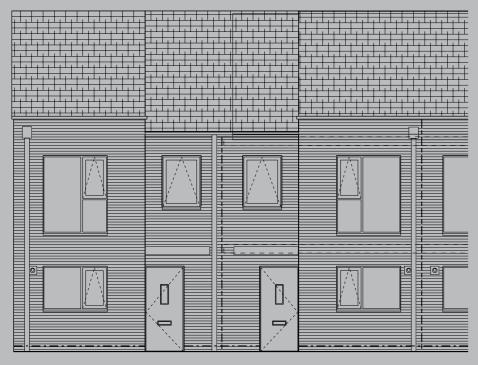
- Timber frame mid terrace
- Timber frame end terrace
- Masonry mid terrace
- Masonry end terrace

The study compared the buildings only, with the external works and utility services excluded at this stage as these will be very much site specific in their content, works and any abnormal or risk areas. Also, they are common to both structural solutions and therefore have no bearing on the analysis. It also assumes a continuous build on site from commencement to completion.

The location of the theoretical project for the study was Birmingham with good access to main trunk

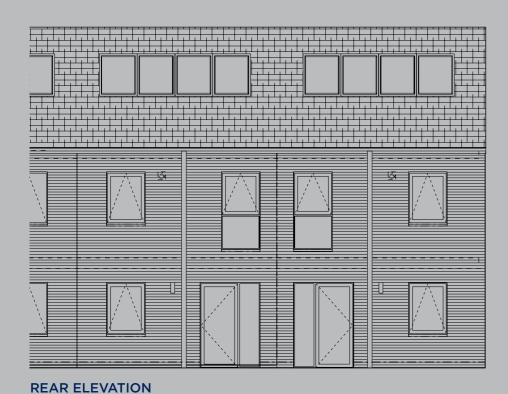
The detailed specification was included on the drawings issued to each contractor. In regard to the masonry and timber frame aspects, relating to the structural elements, the summary table on Page 14 lists the key specification items that are included.

Each contractor received the following drawing information with the specification included:

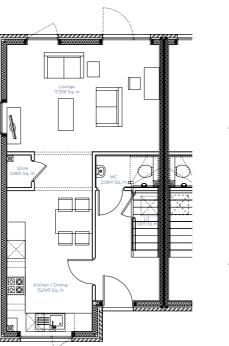

- Mid terrace floor plan
- End terrace floor plan
- General arrangement plans (dimensions)
- Sections
- Elevations
- Wall types
- Floor and roof types
- Substructure details 1 threshold and ventilation details
- Substructure details 2 foundation sections
- Substructure details 3 threshold and internal wall foundation details
- Ground floor penetrations
- Superstructure details 1 floor / wall edge and external wall opening details
- Superstructure details 2 eaves, gable wall and verge details
- Superstructure details 3 parapet roof and ridge details
- Superstructure details 4 external canopy and floor/wall junction details
- Internal stair details

The design, manufacture and delivery of the timber frame, including plant and site labour to off-load and erect, with internal safety decking / working platforms / fall arrest systems was included within the timber frame price issued to all contractors.

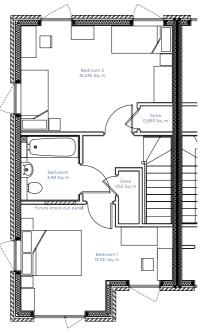
RLB also advised the contractors regarding the specific durations per block for delivery and erection of the timber frame as follows:

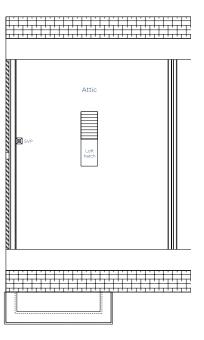

- Three crane days per terrace for the erection of the timber frame
- Three deliveries per terrace for the timber frame (excluding trusses direct to site).

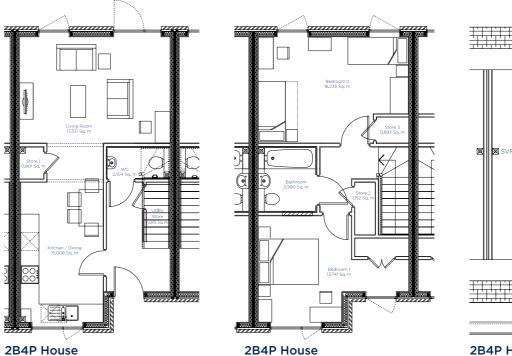
TIMBER FRAME ELEVATIONS AND PLANS



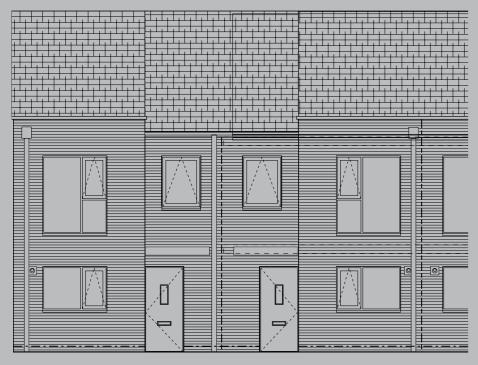
FRONT ELEVATION


10

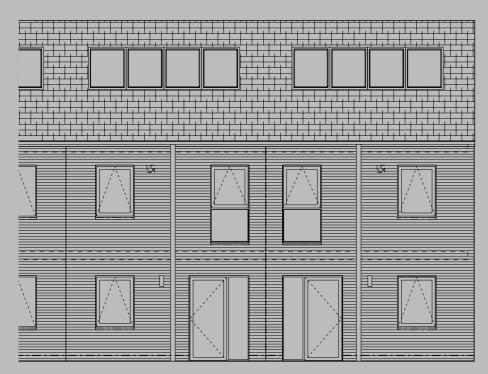

END TERRACE


2B4P House First floor plan

2B4P House Second floor plan

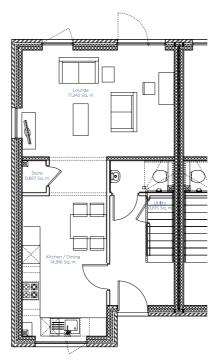

MID TERRACE

Ground floor plan

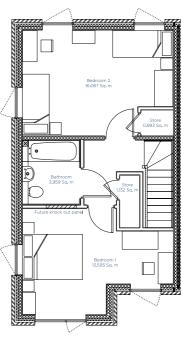


First floor plan

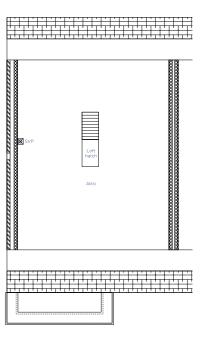
4 MASONRY ELEVATIONS AND PLANS



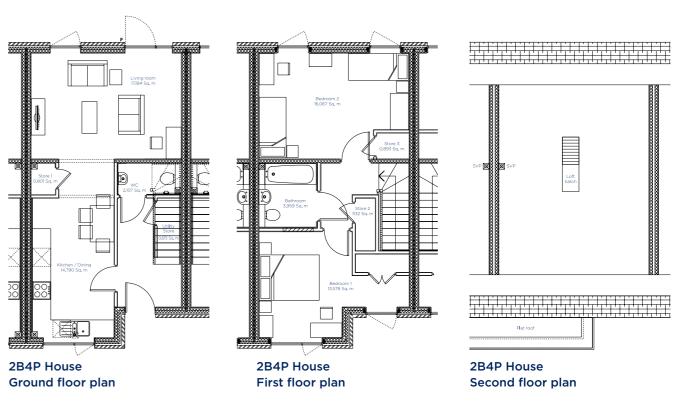
FRONT ELEVATION



REAR ELEVATION


END TERRACE

2B4P House Ground floor plan



2B4P House First floor plan

2B4P House Second floor plan

MID TERRACE

TIMBER FRAME

EXTERNAL WALLS TO HOUSES

102.5mm facing brickwork

- Timber frame wall-ties to suit 50mm cavity
- Cavity barriers to suit 50mm cavity
- 140mm wide timber stud panels with 9mm OSB and low emissivity reflective breather paper
- 140mm wide timber soleplates, head-binders and rails
- 90mm board insulation factory-fitted to external wall panels

Internally lined with low emissivity vapour control layer, 25mm service zone battens and 1 layer of 15mm plasterboard with taped & filled joints

Overall thickness of external wall = 340mm

To achieve 0.19 W/m²K U-value

EXTERNAL WALLS TO ROOF PARAPET

102.5mm facing brickwork

- Timber frame wall-ties to suit 50mm cavity
- Cavity barriers to suit 50mm cavity
- 140mm wide timber stud panels with 9mm OSB and low emissivity reflective breather paper
- 90mm board insulation factory-fitted to external wall panels, filled with 50mm wool insulation slabs to internal side
- 18mm plywood to internal face of parapet fitted on site
- 18mm plywood capping piece to top of parapet wall
 50mm rigid insulation board to upstand

Waterproofing membrane lapped up and under copping

INTERNAL WALLS: LOADBEARING

15mm wall board with taped & jointed finish

- 89mm wide timber stud panels with one row mid-height noggins with the walls to the cloakroom and bathroom pre-fitted with 18mm ply to one side
- 89mm wide timber soleplates (with 450mm DPC), head-binders and rails

15mm wall board with taped & jointed finish

14

MASONRY

EXTERNAL WALLS TO HOUSES

To achieve 0.19 W/m²K U-value

102.5mm facing brickwork
Masonry wall ties to suit 130mm cavity
50mm clear cavity
80mm board insulation installed in the cavity
100mm medium density blockwork
6mm plaster parge coat to seal hidden air paths
12.5mm wall board on 10mm adhesive dabs
Overall thickness of external wall = 361mm

EXTERNAL WALLS TO ROOF PARAPET

102.5mm facing brickwork
Masonry wall ties to suit 130mm cavity
50mm clear cavity
80mm board insulation installed in the cavity
100mm medium density blockwork
50mm rigid insulation board to upstand

Waterproofing membrane lapped up and under copping

INTERNAL WALLS: LOADBEARING

12.5mm wall board with taped & jointed finish 10mm adhesive dabs 100mm lightweight concrete blocks, 3.5N/mm² 10mm adhesive dabs 12.5mm wall board with taped & jointed finish

OR

12.5mm wall board with taped & jointed finish

- 89mm wide timber stud panels with one row mid-height noggins with the walls to the cloakroom and bathroom pre-fitted with 18mm ply to one side
- 89mm wide timber soleplates head-binders and rails

12.5mm wall board with taped & jointed finish

TIMBER FRAME

PARTY WALLS

12.5mm wall board with taped & jointed finish (with joints staggered vertically and horizontally)

19mm sound plank

- 89mm wide timber stud panels with 9mm OSB to cavity face
- 89mm wide timber soleplates (with 150mm DPC), head-binders and rails
- TF party wall cavity insulation (2 layers 100mm acoustic roll and 1 layer 65mm mineral wool), with polythene sleeved cavity barriers to seal edges of party wall cavity.
- 89mm wide timber soleplates (with 150mm DPC), head-binders and rails
- 89mm wide timber stud panels with 9mm OSB to cavity face

19mm sound plank

12.5mm wall board with taped & jointed finish (with joints staggered vertically and horizontally

Achieving Robust Detail EWT2
 Overall thickness of party wall = 313mm

INTERNAL WALLS: NON-LOAD BEARING

12.5mm wall board with taped & jointed finish

- 89mm wide timber stud panels with one row mid-height noggins with the walls to the cloakroom and bathroom pre-fitted with 18mm ply to one side
- 89mm wide timber soleplates head-binders and rails

12.5mm wall board with taped & jointed finish

INTERMEDIATE FLOOR (LOOSE JOISTS)

- 22mm T+G plywood flooring
- Nominal 250mm deep metal-web timber joists, including trimmers and beams to form upper floor
- FCM750 air-tight membrane to external and party wall perimeter of upper floor
- Joist hangers and all other associated ironmongery to form the structural floor

15mm wall board with taped & jointed finish

ROOF

Roof trusses, beams and stability bracing 89mm wide timber spandrel panels with 9mm OSB and standard breather paper

63mm timber gable ladders

Truss shoes and all other associated ironmongery Nominal 38x140mm flat roof joists, timber beam to support trusses and 38x50mm firings

Party wall spandrel panels, pre-clad with 2 layers 12.5mm plasterboard and polythene protection

MASONRY

PARTY WALLS

15mm wall board with taped & jointed finish (with joints staggered vertically and horizontally

10mm adhesive dabs

100mm medium density blockwork

Acoustic wall ties

75mm mineral wool

100mm medium density blockwork

10mm adhesive dabs

15mm wall board with taped & jointed finish (with joints staggered vertically and horizontally

Achieving Robust Detail EWM27

Overall thickness of party wall = 325mm

INTERNAL WALLS: NON-LOAD BEARING

12.5mm wall board with taped & jointed finish

- 89mm wide timber stud panels with one row mid-height noggins with the walls to the cloakroom and bathroom pre-fitted with 18mm ply to one side
- 89mm wide timber soleplates head-binders and rails12.5mm wall board with taped & jointed finish

INTERMEDIATE FLOOR (LOOSE JOISTS)

- 22mm T+G plywood flooring
- Nominal 250mm deep metal-web timber joists, including trimmers and beams to form upper floor
- Joists supported off internal leaf on joist hangers to SE specification
- Joist hangers and all other associated ironmongery to form the structural floor

15mm wall board with taped & jointed finish

ROOF

Roof trusses, beams and stability bracing

Masonry external walls continued up to underside of roof covering, with cavity insulation terminated in line with top of the ceiling insulation.

63mm timber gable ladders

Truss shoes and all other associated ironmongery Nominal 38x140mm flat roof joists, timber beam to support trusses and 38x50mm firings

Masonry party walls continued up to underside of roof covering, with cavity insulation terminated in line with top of the ceiling insulation.

6 COST COMPARISON

The results and comparison within this section are based on prices received by RLB during the 1Q 2018. The resulting tables and charts have been prepared by the author, Ian Dacre of Rider Levett Bucknall, and are the "mean" prices of those received.

The prices are based on three timber frame quotations and four main contractor quotations for the housing model and were received during January / February 2018.

It can be seen that there are some unusual cost differences for one or two elements but we have chosen to leave the base data as submitted by the four contractors to arrive at the mean costs per element.

As with any tender exercise there are vagaries of pricing and if you look at one individual tender this could be an issue. We have received four and between the prices we have been able to normalise the vagaries whilst also leaving the base pricing level data un-touched.

The results were interesting. One contractor of the four priced the construction elements resulting in the masonry option being more economical than timber frame, whereas the other three had the timber frame more economical.

Also, within the pricing it was evident that the external cavity walls by all four contractors resulted in masonry being more economical than a timber frame solution for this particular element. However, as can be seen from the tables below, the overall situation, when factoring in the other building elements and site preliminaries, results in the timber frame solution being more economical to construct.

The preliminaries pricing by the contractors was based on their own interpretation of the construction programme for each build method. The tables below have been based on the mean programme (in weeks) and the costs associated. All four contractors suggested constructing in timber is between 6 and 13 weeks quicker than in masonry. The mean of the four is 8 weeks quicker.

The tables below give the overall average elemental analysis plus cost and programme summaries.

SUMMARY PRICING BY ELEMENT

AVERAGE CONTRACTOR PRICING	TIMBER FRAME		MASONRY	
ELEMENTAL BREAKDOWN	MID TERRACE	END TERRACE	MID TERRACE	END TERRACE
Substructures	£13,694.52	£16,386.15	£14,544.76	£17,139.28
Upper floors	£2,950.04	£2,800.04	£2,786.21	£2,789.48
Stairs	£1,182.09	£1,182.09	£1,182.09	£1,182.09
Roof	£10,850.29	£11,244.88	£10,756.46	£11,526.97
External walls	£8,916.31	£17,985.09	£7,426.50	£17,373.37
Windows and external doors	£6,495.67	£8,084.09	£6,801.00	£8,411,45
Internal walls	£10,723.04	£8,991.96	£10,539.91	£9,578.60
Internal doors	£4,341.71	£3,952.95	£4,403.68	£4,012.82
Wall finishes	£4,314.09	£4,285.71	£5,068.67	£4,314.98
Floor finishes	£1,829.76	£1,827.04	£1,853.73	£1,827.04
Ceiling finishes	£1,831.95	£1,836.41	£1,831.95	£1,836.41
Fixtures and fittings	£8,700.47	£8,700.47	£8,700.47	£8,700.47
Sanitary appliances	£3,205.94	£3,205.94	£3,238.64	£3,238.64
Mechanical services	£7,883.38	£7,883.38	£7,923.50	£7,923.50
Electrical services	£2,972.40	£2,972.40	£2,989.45	£2,989.45
Builders works	£471.75	£471.75	£673.26	£673,26
SUB TOTAL	£90,363.41	£101,810.32	£90,720.28	£103,517.82
Number of units - 16nr each	£1,445,814.53	£1,628,965.20	£1,451,524.52	£1,656,285.07
Total construction works		£3,074,779.73		£3,107,809.59
Preliminaries		£269,303.36		£329,349.52
TOTALS		£3,344,083.09		£3,437,159.12

SUMMARY BY BUILD TYPE

TIMBER	NR UNITS	£ / UNIT	TOTAL	£ / m²
Mid terrace unit	16	£90,363.41	£1,445,814.53	
End terrace unit	16	£101,810.32	£1,628,965.20	
SUB TOTAL £3,074,779.73				£1,055.90
Preliminaries (41 weeks)			£269,303.36	£92.48
TOTAL			£3,344,083.09	£1,148.38
MASONRY	NR UNITS	£ / UNIT	TOTAL	£ / m²
Mid terrace unit	16	£90,720.28	£1,451,524.52	
End terrace unit	16	£103,517.82	£1,656,285.07	
SUB TOTAL			£3,107,809.59	£1,067.24
Preliminaries (49 weeks)		£329,349.52	£113.10
TOTAL			£3,437,159.12	£1,180.34

7 PROCUREMENT GUIDANCE

The procurement process for a timber frame solution is different to that of a more traditional masonry build, and the following items should be considered in the pre-planning stage of a project to ensure the overall success.

- Lead in time for the timber frame design and manufacture
- Engage timber frame suppliers early to maximise value engineering opportunities
- Manage the design process to achieve final design to allow early off-site manufacture
- Ensure level and dimensional tolerance for foundations are understood and achieved
- Minimise change once manufactured
- Engage with follow on trades and materials suppliers earlier to ensure understanding of programme and timescales of timber frame
- Consider fire risk mitigation at cost plan stage, design stage, and construction stage on site
- Consider the quicker return on investment of capital employed

Some, if not all of the above, issues have been taken in account with the four contractors' pricing levels we have seen. All four contractors suggested the procurement and overall delivery using a timber frame solution will be quicker (on average by 8 weeks for our model).

8 COST CONSIDERATIONS

To provide a commentary, we have identified areas which have been raised by the industry as factors to consider:

- Duration of scaffold hire / temporary works
- Number of deliveries to site to be ordered, coordinated, checked, signed-off and paid
- Forklift movement of materials on site
- Number of suppliers to manage and coordinate on site
- Requirement for on site storage
- Requirement of setting-out on site for bricklayers
- Requirement for window and door formers
- Requirement for lintels
- The impact of inclement weather on the delivery programme
- Speed of installation of mechanical and electrical services
- Foundation design to suit imposed load from superstructure build method
- Provision of warranties and product guarantees
- Site waste and disposal costs
- Commencement within the build programme of internal works
- Requirement for wet trades and drying out
- Requirement for design input by the client's design and site teams
- Use of Building Information Modelling (BIM)
- Preliminary works and impact on the overall build programme and costs
- Risk of market conditions including:
 - capacity
 - availability of materials
 - availability of skills
- Speed of build and the impact on:
 - cash-flow
 - return on investment
 - interest costs

9 OTHER CONSIDERATIONS

What to consider:

- Early design team integration (and use of BIM) required
- Preparation and completeness of designs (design freeze) to benefit from early off-site manufacture
- Understanding how the choice of build method impacts the remaining supply chain
- A full understanding of the programming opportunities for the follow-on trades
- Fire risk mitigation considered at cost plan, design and stage and construction (on site)
- The need for accurate and level foundation / slab setting out
- Other materials to provide weather proof external envelope and internal finishes.

10 SUMMARY

The debate may continue, we know, but RLB has undertaken an independent pricing exercise to establish which solution is more economical: masonry or timber frame, as a structural building solution.

The results from the four contractors show to us, that overall, timber, in this scenario, is the most economical solution.

We have seen, however, that individual pricing vagaries can slightly affect results and the average prices and programme times from the four contractors have been used to arrive at the summaries in this paper.

One contractor stated that masonry was the most efficient solution but taking in account the programme and preliminaries aspects, timber became more efficient for them.

All four contractors suggested in their pricing that the timber frame external wall element, in isolation, was more expensive than masonry. Again, however, factoring in preliminaries associated with the programme, timber was more efficient overall. Overall the contractors suggest there are some elements that are more economical to build in a timber frame solution.

The percentage savings are:

- Construction elemental costs 1.1%
- Overall costs (including preliminaries)2.8%

The summary below highlights the key findings of this study.

We are mindful this study is taken at a point in time and we are aware that the market conditions, commercial matters of companies and the overall economic climate can affect the pricing levels. The prices in this study are taken at the 1Q 2018 with all prices received during this period.

We trust this report has given a commentary and understanding of the costs and design implications for pricing a project utilising timber frame.

ELEMENTS	TIMBER FRAME		MASONRY	
	MID TERRACE	END TERRACE	MID TERRACE	END TERRACE
Substructure	£13,694.52	£16,386.15	£14,544.76	£17,139.28
Superstructure	£45,459.16	£54,241.09	£43,895.85	£54,874.79
Finishes	£7,975.80	£7,949.15	£8,754.35	£7,978.43
Fixtures and fittings	£8,700.47	£8,700.47	£8,700.47	£8,700.47
Services	£14,533.46	£14,533.46	£14,824.85	£14,824.85
Sub totals	£90,363.41	£101,810.32	£90,720.28	£103,517.82
Number of units - 16nr each	£1,445,814.53	£1,628,965.20	£1,451,524.52	£1,656,285.07
Total construction works		£3,074,779.73		£3,107,809.59
Preliminaries		£269,303.36		£329,349.52
Totals		£3,344,083.09		£3,437,159.12
Cost per m ²		£1,148.38		£1,180.34
Cost per unit		£104,502.60		£107,411.22
Programme		41 weeks		49 weeks

11 ACKNOWLEDGEMENTS

In completing this study many people and organisations have been involved, as noted on page 23.

In particular we need to thank Gilbert & Goode (Simon Caklais), Robert Woodhead Ltd (Craig Pygall), Speller Metcalfe (James Speller) and WRW Construction Ltd (Andrew Pettigrew) and their respective teams, who provided the detailed pricing information and programming information in order to make this comparison possible.

Oakworth Homes, Pinewood Structures and Stewart Milne Timber Systems kindly provided their pricing information for the timber frame elements.

Thanks to HTA Architects for providing the design models of the houses used within the study. Finally, thanks must also go to Swedish Wood for their support with the study; the first of its kind for the industry.

12 CONTACT INFORMATION

Rider Levett Bucknall

Embassy House 86 Queens Avenue Clifton

Bristol BS8 1SB

Tel: 0117 974 1122

RLB.com

Gilbert and Goode Ltd

Stennack House Stennack Road St Austell PL25 3SW

Tel: 01726 874494

www.gilbertandgoode.co.uk

HTA Design LLP

106-110 Kentish Town Road London NW1 9PX

Tel: 020 7485 8555 **www.hta.co.uk**

Milner Associates

The Cocoa House, 129 Cumberland Rd Bristol

Tel: 0117 403 0761

BS1 6UY

www.milnerassociates.co.uk

Oakworth Homes

8 Orgreave Close Handsworth Sheffield S13 9NP

Tel: 0114 288 9554

www.oakworthhomes.co.uk

Pinewood Structures

The Station Gamlingay Sandy Bedfordshire SG19 3HB

Tel: 01767 651218

www.pinewood-structures.co.uk

Speller Metcalfe

2 Trinity Court Broadlands Wolverhampton WV10 6UH

Tel: 01902 398555

www.spellermetcalfe.com

Stewart Milne Timber Systems

Peregrine House Mosscroft Avenue Westhill Business Park Westhill Aberdeen B32 6JQ

Tel: 0845 366 4837 www.stewartmilne.com

Structural Timber Association

The e-Centre Cooperage Way Alloa FK10 3LP

Tel: 01259 272140

www.structural timber.co.uk

Swedish Wood

Storgatan 19 SE-102 04 Stockholm

Tel: +46 8 762 72 60 www.swedishwood.com

Woodhead Construction

Edwinstowe House Edwinstowe Nottinghamshire NG21 9PR

Tel: 01623 871515

www.woodhead-group.co.uk

WRW Construction Ltd

Anchor Point North Dock Llanelli SA15 2LF

Tel: 01554 779922 **www.wrw.co.uk**

